Absorption enhancement in thin-film silicon solar cells by two-dimensional periodic nanopatterns

نویسندگان

  • Shaomin Wu
  • Wei Wang
  • Kitt Reinhardt
  • Yalin Lu
  • Shaochen Chen
چکیده

A major problem of current silicon thin film solar cells lies in low carrier collection efficiency due to short carrier diffusion length. Instead of improving the collection efficiency in a relatively thick solar cell, increasing light absorption while still keeping the active layer thin is an alternative solution. Absorption enhancement in a thin film Si solar cell by incorporating a two-dimensional periodic metallic nanopattern was investigated using threedimensional finite element analysis. By studying the enhancement effect brought by different materials, dimensions, coverage, and dielectric environments of the metal nanopattern, we found that absorption enhancement occurs at wavelength range outside surface plasmons resonance of the nanostructures. The exploitation of the nanostructures also enhances the Fabry-Perot resonance in the active layer. It plays an important role in optimizing the absorption of the solar cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular behavior of the absorption limit in thin film silicon solar cells

We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thic...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

Excitation of plasmon and guided-mode resonances in thin film silicon solar cells

Thin film silicon solar cells are an attractive option for the production of sustainable energy but their low response at long wavelengths requires additional measures for absorption enhancement. The most successful concepts are based on light scattering interface textures whose understanding is greatly facilitated by considering a superposition of periodic textures that diffract the light into...

متن کامل

Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010